
t*

N94- 949
FLOW VISUALIZATION STUDY IN HIGH ASPECT RATIO

COOLING CHANNELS FOR ROCKET ENGINES

Michael L. Meyer
NASA Lewis Research Center

Cleveland, Ohio 44135

James E. Giuliani

Ohio Aerospace Institute

Brook Park, Ohio 44142

INTRODUCTION:

The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically

maintained through regenerative cooling. The coolant flows through passages formed either by constructing the

chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer mshowed life

extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect

ratios (AR > 4) than the traditional, approximately square cross section, passages. Further, the total coolant

pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements.

High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines,

such as the European Vulcain engine (which uses an aspect ratio up to 9) 2. With platelet manufacturing technology,

channel aspect ratios up to 15 could be formed offering potentially greater benefits ° .

Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or

square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These

vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the

heat transfer at the hot gas wall by about 40 % over a straight channel 4. The effect that increasing channel aspect

ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio

degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing

will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the

benefits of the high aspect ratio geometry 5. A better understanding of the fundamental flow phenomena in high

aspect ratio channels with curvature is needed to fully evaluate the benefits of this geometry.

The fluid dynamic and conjugate heat transfer problem of high aspect ratio rocket engine coolant channels

are being investigated numerically, but these efforts have been hampered by a lack of validating data _e. Wall

temperature data is available for the conjugate problem for channels without curvature and aspect ratio = 5.0 t, and

unheated fluid dynamic data are available for square and circular cross section channels with curvature at Reynold's

numbers up to 40,0007's. But the effects of aspect ratio on secondary flow development have not been

experimentally studied.

To provide some insight into the effects of channel aspect ratio on secondary flow and to qualitatively

provide anchoring for the numerical codes, a flow visualization experiment was initiated at the NASA Lewis
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Re.search Center.

APPARATUS:

The experimental test rig, shown in figure. 1, was designed to permit visualization of the secondary flow

structure that develops in a turning rectangular channel. The test rig consists of upper and lower plexiglass plates,

which form the channel top and bottom, and two strips of plexiglass which make up the side walls. The plexiglass

strips fit into grooves cut into the upper and lower plates. The grooves are spaced 1.25 in. apart and provide a

constant channel width. Wall strips of varying heights may be placed into the groves to change the height of the

channel. Aspect ratios from 1.0 to 5.0 are possible and a wall height was selected for this experiment that gave

the channel an aspect ratio of 5.0 (1.25 in. width x 0.25 in. height; NOTE: In this experiment, the channel is laying

on its side so height and width are interchanged with respect to an actual cooling channel dimensions). The total

length of the channel is 11.3 ft. and consists of two 5.0 ft. straight sections and a 180 ° bend in the center. Upon

entering the channel, the flow first passes through a 5.0 ft. straight section where disturbances dissipate and the flow

is allowed to develop. The channel then turns 180 ° with a 5.0 in. centerline radius of curvature. The channel

continues straight for an additional 5.0 ft. to the flow outlet. Water is pumped through the system either by normal

water supply pressure or by an additional pump. Reynolds numbers based on hydraulic diameter up to 40,000 can

be obtained with the normal supply pressure and Reynolds numbers up to 100,000 are possible with the pump.

To visualize the flow structure in the turning section, the hydrogen bubble technique is used to provide a

seedant for the flow 9,1°. With this technique, hydrogen bubbles are formed on thin wires placed within the flow

field. The wires form the cathode (negative) pole of a DC circuit and an additional wire, which is placed non-

intrusively in the flow, forms the anode (positive) pole. When a current is applied to the circuit, electrolysis takes

place forming oxygen on the anode and hydrogen on the cathode. As hydrogen bubbles form on the cathode wires,

the flow strips them away. Five cathode wires are placed vertically across the width of the channel and 1.0"

upstream of the turning section. The size of the bubbles generated is a function of the wire diameter, conductivity

of the water, applied voltage and flowratet The power supply used to generate the hydrogen bubbles is a 160 V

DC with a 100 mA current limit, and wire diameters of 0.002", 0.005" and 0.010" were interchanged.

A high intensity photographic spot light was used m illuminate the hydrogen bubbles from above as they

flowed through the turning section. The beam from the light source was collimate_i with a series of slits so that only

a thin plane of the flow was illuminated. A standard VHS camera and recorder were used to record the illuminated

particle streaks. The camera was placed perpendicular to the plane of interest and to minimize the distortion caused

by the camera focusing through the curved plexiglass wall, a triangular window was seated against the channel wall

and filled with water. The side of the window provides a flat surface parallel to the focus plane and the water filled

cavity provides a more uniform index of refraction. The optical compensating window was sealed to the test rig

with RTV and could be removed, cleaned and re-attached at a different location. Video image data was recorded

at 1 inch upstream of the bend, 3 inch downstream of the bend and at 0', 30", 60 °, 90 °, 120°, 150 ° and 180 ° from

the start of the bend.
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DATA ANALYSIS:

Analysis of the raw video images provided some insight into the flow structure, however, results were

somewhat inconclusive. A problem with this type of flow visualization is that the particle streaks remain illuminated

for only 2 to 3 video frames before passing out of the light sheet. Once a particle enters a particular region, only

a brief view of the flow structure is given. To better understand where vortices and velocity gradients occur in the

channel, a computer algorithm was developed to enhance the digitized raw video images, resolve vectors from

particle streaks, and infer particle direction by analyzing several sequential frames.

Individual video frames were digitized to a 620 pixel wide by 160 pixel high image with a 15 pixel border

surrounding the actual channel. Figure 2 shows a digitized image from a video frame taken at a Reynolds number

of 6,800. The algorithm first scanned the digitized image looking for local gradients in pixel brightness to find

particle streaks. Once a gradient was encountered, marking a particle streak, the algorithm searched along the

gradient to find the two endpoints. Figure 3 shows the individual particle streaks that were calculated from the

image in figure 2. Resolving the particle streaks by processing the brightness gradients worked well as my streaks

were resolved that are too subtle for the unaided eye. Considering local gradients also eliminated the problem of

resolving streaks in regions where glare on the plexiglass side wall was encountered. While glare on the side wall

caused the background to be of differing intensity levels throughout the image, its change from pixel to pixel was

small and was therefore invisible to local gradient calculations.

once the particle streaks in individual frames are resolved, the algorithm compares sequential frames to

see ifa particle streak in frame 1 at time 0 continues in frame 2 at time At. For each vector in frame 1, frame 2

is searched to see if any endpoints match those in frame 1. If vectors in frame 1 and frame 2 have a matching

endpoint, then a multiple frame particle streak has been found and the direction of the particle is inferred by the

sequence of the frames. A circle is placed on the head of the vector to denote direction.

Figure 4 shows the results of processing 30 sequential frames from video taken at 30 _ from the start of the

bend at a Reynolds number of 6,800 based on hydraulic diameter. Only resolved vectors with magnitudes greater

than 20 pixels are considered. In this figure, the primary flow direction is out of the page, with the outer wall of

the bend on the left and the inner wall on the right. Here the classical secondary flow can be seen, with the velocity

on the upper and lower surfaces travelling towards the inner wall and the centerline velocity travelling towards the

outer wall. This is the result of a pair of horizontally elongated vortices stacked on top of each other. It should

be noted that the flow is not perfectly steady and some particle streaks represent momentary fluctuation in the flow

structure. Some particles can also be seen being stripped from the centerline flow by the flow at the wall. As

Reynolds number is increased, resolving the particle streaks becomes increasingly difficult. Improved experimental

techniques will be required to capture the secondary flow structures at higher velocities.
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Figure 2 - Digitized video image
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Figure 3 - Single frame particle streaks

Figure 4 - Multiple frame particle streaks at Re=6,800 @ 30°
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